Source code for tofu.tests.tests09_tutorials.tuto_plot_custom_emissivity

"""
Computing a camera image with custom emissivity
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This tutorial defines an emissivity that varies in space and computes the
signal received by a camera using this emissivity.
"""

###############################################################################
# We start by loading a built-in `tofu` configuration and define a 2D camera.

import matplotlib.pyplot as plt
import numpy as np
import tofu as tf

configB2 = tf.load_config("B2")

cam2d = tf.geom.utils.create_CamLOS2D(
    config=configB2,
    pinhole=[3.4, 0, 0],
    sensor_nb=100,
    focal=0.1,
    sensor_size=0.1,
    orientation=[np.pi, np.pi/6, 0],
    Name="",
    Exp="",
    Diag="",
)

###############################################################################
# Now, we define an emissivity function that depends on r and z coordinates.
# We can plot its profile in the (0, X, Z) plane.


[docs]def emissivity(pts, t=None, vect=None): """Custom emissivity as a function of geometry. :param pts: ndarray of shape (3, npts) (each column is a xyz coordinate) :param t: optional, time parameter to add a time dependency to the emissivity function :param vect: optional, ndarray of shape (3, npts), if anisotropic emissivity, unit direction vectors (X,Y,Z) :return: - emissivity -- 2D array holding the emissivity for each point in the input grid """ r, z = np.hypot(pts[0, :], pts[1, :]), pts[2, :] e = np.exp(-(r - 2.4) ** 2 / 0.2 ** 2 - z ** 2 / 0.4 ** 2) if t is not None: e = np.cos(np.atleast_1d(t))[:, None] * e[None, :] else: # as stated in documentation of calc_signal, e.ndim must be 2 e = np.reshape(e, (1, -1)) return e
y = np.linspace(2, 3, num=90) z = np.linspace(-0.5, 0.5, num=100) Y, Z = np.meshgrid(y, z) X = np.zeros_like(Y) pts = np.c_[X.ravel(), Y.ravel(), Z.ravel()].T emissivity_vals = emissivity(pts) emissivity_vals = emissivity_vals.reshape(X.shape)
[docs]def project_to_2D(xyz): """Projection to (0, X, Z) plane.""" return xyz[0], xyz[2]
fig, ax = plt.subplots() ax.pcolormesh(Y, Z, emissivity_vals) ax.set_xlabel('y') ax.set_ylabel('z') configB2.plot(lax=ax, proj='cross') cam_center, = ax.plot(*project_to_2D(cam2d._dgeom['pinhole']), '*', ms=20) ax.set_aspect("equal") ax.legend(handles=[cam_center], labels=['camera pinhole'], loc='upper right') ############################################################################### # Finally, we compute an image using the 2D camera and this emissivity. # If we provide a time vector, the field will vary in a cosinusoidal fashion # (see above definition) across time. time_vector = np.linspace(0, 2 * np.pi, num=100) sig, units = cam2d.calc_signal(emissivity, res=0.01, reflections=False, minimize="hybrid", method="sum", newcalc=True, plot=False, ani=False, t=time_vector) sig.plot(ntMax=1) plt.show(block=False)